Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Nov 2023 (v1), last revised 31 Mar 2024 (this version, v2)]
Title:ElasticDiffusion: Training-free Arbitrary Size Image Generation through Global-Local Content Separation
View PDF HTML (experimental)Abstract:Diffusion models have revolutionized image generation in recent years, yet they are still limited to a few sizes and aspect ratios. We propose ElasticDiffusion, a novel training-free decoding method that enables pretrained text-to-image diffusion models to generate images with various sizes. ElasticDiffusion attempts to decouple the generation trajectory of a pretrained model into local and global signals. The local signal controls low-level pixel information and can be estimated on local patches, while the global signal is used to maintain overall structural consistency and is estimated with a reference image. We test our method on CelebA-HQ (faces) and LAION-COCO (objects/indoor/outdoor scenes). Our experiments and qualitative results show superior image coherence quality across aspect ratios compared to MultiDiffusion and the standard decoding strategy of Stable Diffusion. Project page: this https URL
Submission history
From: Moayed Haji-Ali [view email][v1] Thu, 30 Nov 2023 18:58:17 UTC (48,467 KB)
[v2] Sun, 31 Mar 2024 21:11:59 UTC (47,867 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.