Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Dec 2023 (v1), last revised 2 Nov 2024 (this version, v4)]
Title:SASSL: Enhancing Self-Supervised Learning via Neural Style Transfer
View PDF HTML (experimental)Abstract:Existing data augmentation in self-supervised learning, while diverse, fails to preserve the inherent structure of natural images. This results in distorted augmented samples with compromised semantic information, ultimately impacting downstream performance. To overcome this limitation, we propose SASSL: Style Augmentations for Self Supervised Learning, a novel data augmentation technique based on Neural Style Transfer. SASSL decouples semantic and stylistic attributes in images and applies transformations exclusively to their style while preserving content, generating diverse samples that better retain semantic information. SASSL boosts top-1 image classification accuracy on ImageNet by up to 2 percentage points compared to established self-supervised methods like MoCo, SimCLR, and BYOL, while achieving superior transfer learning performance across various datasets. Because SASSL can be performed asynchronously as part of the data augmentation pipeline, these performance impacts can be obtained with no change in pretraining throughput.
Submission history
From: Renan Rojas-Gomez [view email][v1] Sat, 2 Dec 2023 17:25:30 UTC (1,124 KB)
[v2] Tue, 2 Jan 2024 02:05:01 UTC (1,124 KB)
[v3] Sat, 3 Feb 2024 23:10:16 UTC (1,706 KB)
[v4] Sat, 2 Nov 2024 17:08:45 UTC (1,694 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.