Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 7 Dec 2023]
Title:An Improved Scheduling with Advantage Actor-Critic for Storm Workloads
View PDF HTML (experimental)Abstract:Various resources as the essential elements of data centers, and the completion time is vital to users. In terms of the persistence, the periodicity and the spatial-temporal dependence of stream workload, a new Storm scheduler with Advantage Actor-Critic is proposed to improve resource utilization for minimizing the completion time. A new weighted embedding with a Graph Neural Network is designed to depend on the features of a job comprehensively, which includes the dependence, the types and the positions of tasks in a job. An improved Advantage Actor-Critic integrating task chosen and executor assignment is proposed to schedule tasks to executors in order to better resource utilization. Then the status of tasks and executors are updated for the next scheduling. Compared to existing methods, experimental results show that the proposed Storm scheduler improves resource utilization. The completion time is reduced by almost 17\% on the TPC-H data set and reduced by almost 25\% on the Alibaba data set.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.