Mathematics > Numerical Analysis
[Submitted on 13 Dec 2023 (v1), last revised 28 May 2024 (this version, v2)]
Title:Efficient solution of sequences of parametrized Lyapunov equations with applications
View PDF HTML (experimental)Abstract:Sequences of parametrized Lyapunov equations can be encountered in many application settings. Moreover, solutions of such equations are often intermediate steps of an overall procedure whose main goal is the computation of $\text{trace}(EX)$ where $X$ denotes the solution of a Lyapunov equation and $E$ is a given matrix. We are interested in addressing problems where the parameter dependency of the coefficient matrix is encoded as a low-rank modification to a \emph{seed}, fixed matrix. We propose two novel numerical procedures that fully exploit such a common structure. The first one builds upon the Sherman-Morrison-Woodbury (SMW) formula and recycling Krylov techniques, and it is well-suited for small dimensional problems as it makes use of dense numerical linear algebra tools. The second algorithm can instead address large-scale problems by relying on state-of-the-art projection techniques based on the extended Krylov subspace. We test the new algorithms on several problems arising in the study of damped vibrational systems and the analyses of output synchronization problems for multi-agent systems. Our results show that the algorithms we propose are superior to state-of-the-art techniques as they are able to remarkably speed up the computation of accurate solutions.
Submission history
From: Davide Palitta [view email][v1] Wed, 13 Dec 2023 15:10:45 UTC (1,036 KB)
[v2] Tue, 28 May 2024 18:04:22 UTC (444 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.