Quantitative Biology > Neurons and Cognition
[Submitted on 13 Dec 2023 (v1), last revised 7 Jun 2024 (this version, v3)]
Title:Reconciling Shared versus Context-Specific Information in a Neural Network Model of Latent Causes
View PDFAbstract:It has been proposed that, when processing a stream of events, humans divide their experiences in terms of inferred latent causes (LCs) to support context-dependent learning. However, when shared structure is present across contexts, it is still unclear how the "splitting" of LCs and learning of shared structure can be simultaneously achieved. Here, we present the Latent Cause Network (LCNet), a neural network model of LC inference. Through learning, it naturally stores structure that is shared across tasks in the network weights. Additionally, it represents context-specific structure using a context module, controlled by a Bayesian nonparametric inference algorithm, which assigns a unique context vector for each inferred LC. Across three simulations, we found that LCNet could 1) extract shared structure across LCs in a function learning task while avoiding catastrophic interference, 2) capture human data on curriculum effects in schema learning, and 3) infer the underlying event structure when processing naturalistic videos of daily events. Overall, these results demonstrate a computationally feasible approach to reconciling shared structure and context-specific structure in a model of LCs that is scalable from laboratory experiment settings to naturalistic settings.
Submission history
From: Qihong Lu [view email][v1] Wed, 13 Dec 2023 21:12:02 UTC (3,798 KB)
[v2] Sat, 2 Mar 2024 02:39:35 UTC (4,737 KB)
[v3] Fri, 7 Jun 2024 01:59:28 UTC (3,444 KB)
Current browse context:
q-bio.NC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.