Electrical Engineering and Systems Science > Signal Processing
[Submitted on 15 Nov 2023 (v1), last revised 8 Jan 2024 (this version, v2)]
Title:Point-of-Care Real-Time Signal Quality for Fetal Doppler Ultrasound Using a Deep Learning Approach
View PDFAbstract:In this study, we present a deep learning framework designed to integrate with our previously developed system that facilitates large-scale 1D fetal Doppler data collection, aiming to enhance data quality. This system, tailored for traditional Indigenous midwives in low-resource communities, leverages a cost-effective Android phone to improve the quality of recorded signals. We have shown that the Doppler data can be used to identify fetal growth restriction, hypertension, and other concerning issues during pregnancy. However, the quality of the signal is dependent on many factors, including radio frequency interference, position of the fetus, maternal body habitus, and usage of the Doppler by the birth attendants. In order to provide instant feedback to allow correction of the data at source, a signal quality metric is required that can run in real-time on the mobile phone.
In this study, 191 DUS signals with durations mainly in the range between 5 to 10 minutes were evaluated for quality and classified into five categories: Good, Poor, (Radiofrequency) Interference, Talking, and Silent, at a resolution of 3.75 seconds. A deep neural network was trained on each 3.75-second segment from these recordings and validated using five-fold cross-validation.
An average micro F1 = 97.4\% and macro F1 = 94.2\% were achieved, with F1 = 99.2\% for `Good' quality data. These results indicate that the algorithm, which will now be implemented in the midwives' app, should allow a significant increase in the quality of data at the time of capture.
Submission history
From: Mohsen Motieshirazi [view email][v1] Wed, 15 Nov 2023 03:33:19 UTC (1,339 KB)
[v2] Mon, 8 Jan 2024 18:45:15 UTC (1,803 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.