Computer Science > Computers and Society
[Submitted on 1 Dec 2023 (v1), last revised 31 May 2024 (this version, v2)]
Title:Interpretable Knowledge Tracing via Response Influence-based Counterfactual Reasoning
View PDF HTML (experimental)Abstract:Knowledge tracing (KT) plays a crucial role in computer-aided education and intelligent tutoring systems, aiming to assess students' knowledge proficiency by predicting their future performance on new questions based on their past response records. While existing deep learning knowledge tracing (DLKT) methods have significantly improved prediction accuracy and achieved state-of-the-art results, they often suffer from a lack of interpretability. To address this limitation, current approaches have explored incorporating psychological influences to achieve more explainable predictions, but they tend to overlook the potential influences of historical responses. In fact, understanding how models make predictions based on response influences can enhance the transparency and trustworthiness of the knowledge tracing process, presenting an opportunity for a new paradigm of interpretable KT. However, measuring unobservable response influences is challenging. In this paper, we resort to counterfactual reasoning that intervenes in each response to answer \textit{what if a student had answered a question incorrectly that he/she actually answered correctly, and vice versa}. Based on this, we propose RCKT, a novel response influence-based counterfactual knowledge tracing framework. RCKT generates response influences by comparing prediction outcomes from factual sequences and constructed counterfactual sequences after interventions. Additionally, we introduce maximization and inference techniques to leverage accumulated influences from different past responses, further improving the model's performance and credibility. Extensive experimental results demonstrate that our RCKT method outperforms state-of-the-art knowledge tracing methods on four datasets against six baselines, and provides credible interpretations of response influences.
Submission history
From: Wei Zhang [view email][v1] Fri, 1 Dec 2023 11:27:08 UTC (1,465 KB)
[v2] Fri, 31 May 2024 14:19:03 UTC (4,436 KB)
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.