Computer Science > Machine Learning
[Submitted on 16 Dec 2023 (v1), last revised 30 Oct 2024 (this version, v2)]
Title:Certified Minimax Unlearning with Generalization Rates and Deletion Capacity
View PDF HTML (experimental)Abstract:We study the problem of $(\epsilon,\delta)$-certified machine unlearning for minimax models. Most of the existing works focus on unlearning from standard statistical learning models that have a single variable and their unlearning steps hinge on the direct Hessian-based conventional Newton update. We develop a new $(\epsilon,\delta)$-certified machine unlearning algorithm for minimax models. It proposes a minimax unlearning step consisting of a total-Hessian-based complete Newton update and the Gaussian mechanism borrowed from differential privacy. To obtain the unlearning certification, our method injects calibrated Gaussian noises by carefully analyzing the "sensitivity" of the minimax unlearning step (i.e., the closeness between the minimax unlearning variables and the retraining-from-scratch variables). We derive the generalization rates in terms of population strong and weak primal-dual risk for three different cases of loss functions, i.e., (strongly-)convex-(strongly-)concave losses. We also provide the deletion capacity to guarantee that a desired population risk can be maintained as long as the number of deleted samples does not exceed the derived amount. With training samples $n$ and model dimension $d$, it yields the order $\mathcal O(n/d^{1/4})$, which shows a strict gap over the baseline method of differentially private minimax learning that has $\mathcal O(n/d^{1/2})$. In addition, our rates of generalization and deletion capacity match the state-of-the-art rates derived previously for standard statistical learning models.
Submission history
From: Jiaqi Liu [view email][v1] Sat, 16 Dec 2023 06:03:23 UTC (42 KB)
[v2] Wed, 30 Oct 2024 14:37:32 UTC (44 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.