Computer Science > Machine Learning
[Submitted on 16 Dec 2023]
Title:Take History as a Mirror in Heterogeneous Federated Learning
View PDF HTML (experimental)Abstract:Federated Learning (FL) allows several clients to cooperatively train machine learning models without disclosing the raw data. In practice, due to the system and statistical heterogeneity among devices, synchronous FL often encounters the straggler effect. In contrast, asynchronous FL can mitigate this problem, making it suitable for scenarios involving numerous participants. However, Non-IID data and stale models present significant challenges to asynchronous FL, as they would diminish the practicality of the global model and even lead to training failures. In this work, we propose a novel asynchronous FL framework called Federated Historical Learning (FedHist), which effectively addresses the challenges posed by both Non-IID data and gradient staleness. FedHist enhances the stability of local gradients by performing weighted fusion with historical global gradients cached on the server. Relying on hindsight, it assigns aggregation weights to each participant in a multi-dimensional manner during each communication round. To further enhance the efficiency and stability of the training process, we introduce an intelligent $\ell_2$-norm amplification scheme, which dynamically regulates the learning progress based on the $\ell_2$-norms of the submitted gradients. Extensive experiments demonstrate that FedHist outperforms state-of-the-art methods in terms of convergence performance and test accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.