Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Dec 2023]
Title:A new method color MS-BSIF Features learning for the robust kinship verification
View PDFAbstract:the paper presents a new method color MS-BSIF learning and MS-LBP for the kinship verification is the machine's ability to identify the genetic and blood the relationship and its degree between the facial images of humans. Facial verification of kinship refers to the task of training a machine to recognize the blood relationship between a pair of faces parent and non-parent (verification) based on features extracted from facial images, and determining the exact type or degree of this genetic relationship. We use the LBP and color BSIF learning features for the comparison and the TXQDA method for dimensionality reduction and data classification. We let's test the kinship facial verification application is namely the kinface Cornell database. This system improves the robustness of learning while controlling efficiency. The experimental results obtained and compared to other methods have proven the reliability of our framework and surpass the performance of other state-of-the-art techniques.
Submission history
From: Ouamane Abdelmalik [view email][v1] Sat, 16 Dec 2023 15:21:51 UTC (772 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.