Computer Science > Computation and Language
[Submitted on 17 Dec 2023 (v1), last revised 12 Oct 2024 (this version, v2)]
Title:Distinguishing Translations by Human, NMT, and ChatGPT: A Linguistic and Statistical Approach
View PDF HTML (experimental)Abstract:The growing popularity of neural machine translation (NMT) and LLMs represented by ChatGPT underscores the need for a deeper understanding of their distinct characteristics and relationships. Such understanding is crucial for language professionals and researchers to make informed decisions and tactful use of these cutting-edge translation technology, but remains underexplored. This study aims to fill this gap by investigating three key questions: (1) the distinguishability of ChatGPT-generated translations from NMT and human translation (HT), (2) the linguistic characteristics of each translation type, and (3) the degree of resemblance between ChatGPT-produced translations and HT or NMT. To achieve these objectives, we employ statistical testing, machine learning algorithms, and multidimensional analysis (MDA) to analyze Spokesperson's Remarks and their translations. After extracting a wide range of linguistic features, supervised classifiers demonstrate high accuracy in distinguishing the three translation types, whereas unsupervised clustering techniques do not yield satisfactory results. Another major finding is that ChatGPT-produced translations exhibit greater similarity with NMT than HT in most MDA dimensions, which is further corroborated by distance computing and visualization. These novel insights shed light on the interrelationships among the three translation types and have implications for the future advancements of NMT and generative AI.
Submission history
From: Ziyin Zhang [view email][v1] Sun, 17 Dec 2023 15:56:05 UTC (703 KB)
[v2] Sat, 12 Oct 2024 10:58:29 UTC (703 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.