Electrical Engineering and Systems Science > Systems and Control
[Submitted on 19 Dec 2023]
Title:Stable Relay Learning Optimization Approach for Fast Power System Production Cost Minimization Simulation
View PDF HTML (experimental)Abstract:Production cost minimization (PCM) simulation is commonly employed for assessing the operational efficiency, economic viability, and reliability, providing valuable insights for power system planning and operations. However, solving a PCM problem is time-consuming, consisting of numerous binary variables for simulation horizon extending over months and years. This hinders rapid assessment of modern energy systems with diverse planning requirements. Existing methods for accelerating PCM tend to sacrifice accuracy for speed. In this paper, we propose a stable relay learning optimization (s-RLO) approach within the Branch and Bound (B&B) algorithm. The proposed approach offers rapid and stable performance, and ensures optimal solutions. The two-stage s-RLO involves an imitation learning (IL) phase for accurate policy initialization and a reinforcement learning (RL) phase for time-efficient fine-tuning. When implemented on the popular SCIP solver, s-RLO returns the optimal solution up to 2 times faster than the default relpscost rule and 1.4 times faster than IL, or exhibits a smaller gap at the predefined time limit. The proposed approach shows stable performance, reducing fluctuations by approximately 50% compared with IL. The efficacy of the proposed s-RLO approach is supported by numerical results.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.