Computer Science > Computer Science and Game Theory
[Submitted on 19 Dec 2023 (v1), last revised 21 Dec 2023 (this version, v2)]
Title:Optimistic Policy Gradient in Multi-Player Markov Games with a Single Controller: Convergence Beyond the Minty Property
View PDF HTML (experimental)Abstract:Policy gradient methods enjoy strong practical performance in numerous tasks in reinforcement learning. Their theoretical understanding in multiagent settings, however, remains limited, especially beyond two-player competitive and potential Markov games. In this paper, we develop a new framework to characterize optimistic policy gradient methods in multi-player Markov games with a single controller. Specifically, under the further assumption that the game exhibits an equilibrium collapse, in that the marginals of coarse correlated equilibria (CCE) induce Nash equilibria (NE), we show convergence to stationary $\epsilon$-NE in $O(1/\epsilon^2)$ iterations, where $O(\cdot)$ suppresses polynomial factors in the natural parameters of the game. Such an equilibrium collapse is well-known to manifest itself in two-player zero-sum Markov games, but also occurs even in a class of multi-player Markov games with separable interactions, as established by recent work. As a result, we bypass known complexity barriers for computing stationary NE when either of our assumptions fails. Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games.
Submission history
From: Ioannis Anagnostides [view email][v1] Tue, 19 Dec 2023 11:34:10 UTC (489 KB)
[v2] Thu, 21 Dec 2023 18:28:31 UTC (489 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.