Computer Science > Emerging Technologies
[Submitted on 20 Dec 2023]
Title:Programmable electrical coupling between stochastic magnetic tunnel junctions
View PDFAbstract:Superparamagnetic tunnel junctions (SMTJs) are promising sources of randomness for compact and energy efficient implementations of probabilistic computing techniques. Augmenting an SMTJ with electronic circuits, to convert the random telegraph fluctuations of its resistance state to stochastic digital signals, gives a basic building block known as a probabilistic bit or $p$-bit. Though scalable probabilistic computing methods connecting $p$-bits have been proposed, practical implementations are limited by either minimal tunability or energy inefficient microprocessors-in-the-loop. In this work, we experimentally demonstrate the functionality of a scalable analog unit cell, namely a pair of $p$-bits with programmable electrical coupling. This tunable coupling is implemented with operational amplifier circuits that have a time constant of approximately 1us, which is faster than the mean dwell times of the SMTJs over most of the operating range. Programmability enables flexibility, allowing both positive and negative couplings, as well as coupling devices with widely varying device properties. These tunable coupling circuits can achieve the whole range of correlations from $-1$ to $1$, for both devices with similar timescales, and devices whose time scales vary by an order of magnitude. This range of correlation allows such circuits to be used for scalable implementations of simulated annealing with probabilistic computing.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.