Computer Science > Cryptography and Security
[Submitted on 21 Dec 2023]
Title:HW-V2W-Map: Hardware Vulnerability to Weakness Mapping Framework for Root Cause Analysis with GPT-assisted Mitigation Suggestion
View PDFAbstract:The escalating complexity of modern computing frameworks has resulted in a surge in the cybersecurity vulnerabilities reported to the National Vulnerability Database (NVD) by practitioners. Despite the fact that the stature of NVD is one of the most significant databases for the latest insights into vulnerabilities, extracting meaningful trends from such a large amount of unstructured data is still challenging without the application of suitable technological methodologies. Previous efforts have mostly concentrated on software vulnerabilities; however, a holistic strategy incorporates approaches for mitigating vulnerabilities, score prediction, and a knowledge-generating system that may extract relevant insights from the Common Weakness Enumeration (CWE) and Common Vulnerability Exchange (CVE) databases is notably absent. As the number of hardware attacks on Internet of Things (IoT) devices continues to rapidly increase, we present the Hardware Vulnerability to Weakness Mapping (HW-V2W-Map) Framework, which is a Machine Learning (ML) framework focusing on hardware vulnerabilities and IoT security. The architecture that we have proposed incorporates an Ontology-driven Storytelling framework, which automates the process of updating the ontology in order to recognize patterns and evolution of vulnerabilities over time and provides approaches for mitigating the vulnerabilities. The repercussions of vulnerabilities can be mitigated as a result of this, and conversely, future exposures can be predicted and prevented. Furthermore, our proposed framework utilized Generative Pre-trained Transformer (GPT) Large Language Models (LLMs) to provide mitigation suggestions.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.