Computer Science > Computation and Language
[Submitted on 28 Dec 2023 (v1), last revised 15 Jun 2024 (this version, v2)]
Title:How Far Are LLMs from Believable AI? A Benchmark for Evaluating the Believability of Human Behavior Simulation
View PDF HTML (experimental)Abstract:In recent years, AI has demonstrated remarkable capabilities in simulating human behaviors, particularly those implemented with large language models (LLMs). However, due to the lack of systematic evaluation of LLMs' simulated behaviors, the believability of LLMs among humans remains ambiguous, i.e., it is unclear which behaviors of LLMs are convincingly human-like and which need further improvements. In this work, we design SimulateBench to evaluate the believability of LLMs when simulating human behaviors. In specific, we evaluate the believability of LLMs based on two critical dimensions: 1) consistency: the extent to which LLMs can behave consistently with the given information of a human to simulate; and 2) robustness: the ability of LLMs' simulated behaviors to remain robust when faced with perturbations. SimulateBench includes 65 character profiles and a total of 8,400 questions to examine LLMs' simulated behaviors. Based on SimulateBench, we evaluate the performances of 10 widely used LLMs when simulating characters. The experimental results reveal that current LLMs struggle to align their behaviors with assigned characters and are vulnerable to perturbations in certain factors.
Submission history
From: Yang Xiao [view email][v1] Thu, 28 Dec 2023 16:51:11 UTC (2,741 KB)
[v2] Sat, 15 Jun 2024 14:08:30 UTC (3,622 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.