Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Dec 2023]
Title:Semantic segmentation of SEM images of lower bainitic and tempered martensitic steels
View PDFAbstract:This study employs deep learning techniques to segment scanning electron microscope images, enabling a quantitative analysis of carbide precipitates in lower bainite and tempered martensite steels with comparable strength. Following segmentation, carbides are investigated, and their volume percentage, size distribution, and orientations are probed within the image dataset. Our findings reveal that lower bainite and tempered martensite exhibit comparable volume percentages of carbides, albeit with a more uniform distribution of carbides in tempered martensite. Carbides in lower bainite demonstrate a tendency for better alignment than those in tempered martensite, aligning with the observations of other researchers. However, both microstructures display a scattered carbide orientation, devoid of any discernible pattern. Comparative analysis of aspect ratios and sizes of carbides in lower bainite and tempered martensite unveils striking similarities. The deep learning model achieves an impressive pixelwise accuracy of 98.0% in classifying carbide/iron matrix at the individual pixel level. The semantic segmentation derived from deep learning extends its applicability to the analysis of secondary phases in various materials, offering a time-efficient, versatile AI-powered workflow for quantitative microstructure analysis.
Current browse context:
cs.CV
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.