Computer Science > Data Structures and Algorithms
[Submitted on 5 Jan 2024]
Title:Approximation Algorithms for the Weighted Nash Social Welfare via Convex and Non-Convex Programs
View PDF HTML (experimental)Abstract:In an instance of the weighted Nash Social Welfare problem, we are given a set of $m$ indivisible items, $\mathscr{G}$, and $n$ agents, $\mathscr{A}$, where each agent $i \in \mathscr{A}$ has a valuation $v_{ij}\geq 0$ for each item $j\in \mathscr{G}$. In addition, every agent $i$ has a non-negative weight $w_i$ such that the weights collectively sum up to $1$. The goal is to find an assignment $\sigma:\mathscr{G}\rightarrow \mathscr{A}$ that maximizes $\prod_{i\in \mathscr{A}} \left(\sum_{j\in \sigma^{-1}(i)} v_{ij}\right)^{w_i}$, the product of the weighted valuations of the players. When all the weights equal $\frac1n$, the problem reduces to the classical Nash Social Welfare problem, which has recently received much attention. In this work, we present a $5\cdot\exp\left(2\cdot D_{\text{KL}}(\mathbf{w}\, ||\, \frac{\vec{\mathbf{1}}}{n})\right) = 5\cdot\exp\left(2\log{n} + 2\sum_{i=1}^n w_i \log{w_i}\right)$-approximation algorithm for the weighted Nash Social Welfare problem, where $D_{\text{KL}}(\mathbf{w}\, ||\, \frac{\vec{\mathbf{1}}}{n})$ denotes the KL-divergence between the distribution induced by $\mathbf{w}$ and the uniform distribution on $[n]$.
We show a novel connection between the convex programming relaxations for the unweighted variant of Nash Social Welfare presented in \cite{cole2017convex, anari2017nash}, and generalize the programs to two different mathematical programs for the weighted case. The first program is convex and is necessary for computational efficiency, while the second program is a non-convex relaxation that can be rounded efficiently. The approximation factor derives from the difference in the objective values of the convex and non-convex relaxation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.