Computer Science > Computation and Language
[Submitted on 9 Jan 2024 (v1), last revised 12 Jun 2024 (this version, v3)]
Title:Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs
View PDF HTML (experimental)Abstract:In this paper, we explore a new way for user targeting, where non-expert marketers could select their target users solely given demands in natural language form. The key to this issue is how to transform natural languages into practical structured logical languages, i.e., the structured understanding of marketer demands. In practical scenarios, the demands of non-expert marketers are often abstract and diverse. Considering the impressive natural language processing ability of large language models (LLMs), we try to leverage LLMs to solve this issue. To stimulate the LLMs' reasoning ability, the chain-of-thought (CoT) prompting method is widely used, but existing methods still have some limitations in our scenario: (1) Previous methods either use simple "Let's think step by step" spells or provide fixed examples in demonstrations without considering compatibility between prompts and concrete questions, making LLMs ineffective when the marketers' demands are abstract and diverse. (2) Previous methods are often implemented in closed-source models or excessively large models, which is not suitable in industrial practical scenarios. Based on these, we propose ARALLM (i.e., Analogical Reasoning Augmented Large Language Models) consisting of two modules: Analogical Reasoning based Prompting and Reasoning-Augmented Multi-Task Model Distillation. Part of our data and code can be found at this https URL.
Submission history
From: Junjie Wang [view email][v1] Tue, 9 Jan 2024 02:25:23 UTC (2,047 KB)
[v2] Wed, 7 Feb 2024 15:01:21 UTC (3,546 KB)
[v3] Wed, 12 Jun 2024 03:02:45 UTC (3,268 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.