Computer Science > Information Retrieval
[Submitted on 9 Jan 2024 (v1), last revised 13 Oct 2024 (this version, v2)]
Title:Fine-Grained Embedding Dimension Optimization During Training for Recommender Systems
View PDF HTML (experimental)Abstract:Huge embedding tables in modern deep learning recommender models (DLRM) require prohibitively large memory during training and inference. This paper proposes FIITED, a system to automatically reduce the memory footprint via FIne-grained In-Training Embedding Dimension pruning. By leveraging the key insight that embedding vectors are not equally important, FIITED adaptively adjusts the dimension of each individual embedding vector during model training, assigning larger dimensions to more important embeddings while adapting to dynamic changes in data. We prioritize embedding dimensions with higher frequencies and gradients as more important. To enable efficient pruning of embeddings and their dimensions during model training, we propose an embedding storage system based on virtually-hashed physically-indexed hash tables. Experiments on two industry models and months of realistic datasets show that FIITED can reduce DLRM embedding size by more than 65% while preserving model quality, outperforming state-of-the-art in-training embedding pruning methods. On public datasets, FIITED can reduce the size of embedding tables by 2.1x to 800x with negligible accuracy drop, while improving model throughput.
Submission history
From: Penghan Wang [view email][v1] Tue, 9 Jan 2024 08:04:11 UTC (1,411 KB)
[v2] Sun, 13 Oct 2024 07:05:51 UTC (3,308 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.