Computer Science > Cryptography and Security
[Submitted on 13 Jan 2024]
Title:CAC 2.0: A Corrupt and Correct Logic Locking Technique Resilient to Structural Analysis Attacks
View PDF HTML (experimental)Abstract:Logic locking proposed to protect integrated circuits from serious hardware threats has been studied extensively over a decade. In these years, many efficient logic locking techniques have been proven to be broken. The state-of-the-art logic locking techniques, including the prominent corrupt and correct (CAC) technique, are resilient to satisfiability (SAT)-based and removal attacks, but vulnerable to structural analysis attacks. To overcome this drawback, this paper introduces an improved version of CAC, called CAC 2.0, which increases the search space of structural analysis attacks using obfuscation. To do so, CAC 2.0 locks the original circuit twice, one after another, on different nodes with different number of protected primary inputs using CAC, while hiding original protected primary inputs among decoy primary inputs. This paper also introduces an open source logic locking tool, called HIID, equipped with well-known techniques including CAC 2.0. Our experiments show that CAC 2.0 is resilient to existing SAT-based, removal, and structural analysis attacks. To achieve this, it increases the number of key inputs at most 4x and the gate-level area between 30.2% and 0.8% on circuits with low and high complexity with respect to CAC.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.