Computer Science > Artificial Intelligence
[Submitted on 27 Dec 2023]
Title:Gemini Pro Defeated by GPT-4V: Evidence from Education
View PDF HTML (experimental)Abstract:This study compared the classification performance of Gemini Pro and GPT-4V in educational settings. Employing visual question answering (VQA) techniques, the study examined both models' abilities to read text-based rubrics and then automatically score student-drawn models in science education. We employed both quantitative and qualitative analyses using a dataset derived from student-drawn scientific models and employing NERIF (Notation-Enhanced Rubrics for Image Feedback) prompting methods. The findings reveal that GPT-4V significantly outperforms Gemini Pro in terms of scoring accuracy and Quadratic Weighted Kappa. The qualitative analysis reveals that the differences may be due to the models' ability to process fine-grained texts in images and overall image classification performance. Even adapting the NERIF approach by further de-sizing the input images, Gemini Pro seems not able to perform as well as GPT-4V. The findings suggest GPT-4V's superior capability in handling complex multimodal educational tasks. The study concludes that while both models represent advancements in AI, GPT-4V's higher performance makes it a more suitable tool for educational applications involving multimodal data interpretation.
Submission history
From: Gyeong-Geon Lee Dr [view email][v1] Wed, 27 Dec 2023 02:56:41 UTC (6,992 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.