Computer Science > Computers and Society
[Submitted on 30 Dec 2023]
Title:What's my role? Modelling responsibility for AI-based safety-critical systems
View PDF HTML (experimental)Abstract:AI-Based Safety-Critical Systems (AI-SCS) are being increasingly deployed in the real world. These can pose a risk of harm to people and the environment. Reducing that risk is an overarching priority during development and operation. As more AI-SCS become autonomous, a layer of risk management via human intervention has been removed. Following an accident it will be important to identify causal contributions and the different responsible actors behind those to learn from mistakes and prevent similar future events. Many authors have commented on the "responsibility gap" where it is difficult for developers and manufacturers to be held responsible for harmful behaviour of an AI-SCS. This is due to the complex development cycle for AI, uncertainty in AI performance, and dynamic operating environment. A human operator can become a "liability sink" absorbing blame for the consequences of AI-SCS outputs they weren't responsible for creating, and may not have understanding of.
This cross-disciplinary paper considers different senses of responsibility (role, moral, legal and causal), and how they apply in the context of AI-SCS safety. We use a core concept (Actor(A) is responsible for Occurrence(O)) to create role responsibility models, producing a practical method to capture responsibility relationships and provide clarity on the previously identified responsibility issues. Our paper demonstrates the approach with two examples: a retrospective analysis of the Tempe Arizona fatal collision involving an autonomous vehicle, and a safety focused predictive role-responsibility analysis for an AI-based diabetes co-morbidity predictor. In both examples our primary focus is on safety, aiming to reduce unfair or disproportionate blame being placed on operators or developers. We present a discussion and avenues for future research.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.