Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Jan 2024]
Title:Learning to Manipulate Artistic Images
View PDF HTML (experimental)Abstract:Recent advancement in computer vision has significantly lowered the barriers to artistic creation. Exemplar-based image translation methods have attracted much attention due to flexibility and controllability. However, these methods hold assumptions regarding semantics or require semantic information as the input, while accurate semantics is not easy to obtain in artistic images. Besides, these methods suffer from cross-domain artifacts due to training data prior and generate imprecise structure due to feature compression in the spatial domain. In this paper, we propose an arbitrary Style Image Manipulation Network (SIM-Net), which leverages semantic-free information as guidance and a region transportation strategy in a self-supervised manner for image generation. Our method balances computational efficiency and high resolution to a certain extent. Moreover, our method facilitates zero-shot style image manipulation. Both qualitative and quantitative experiments demonstrate the superiority of our method over state-of-the-art this http URL is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.