Computer Science > Artificial Intelligence
[Submitted on 27 Jan 2024 (v1), last revised 25 Oct 2024 (this version, v5)]
Title:DiffuserLite: Towards Real-time Diffusion Planning
View PDF HTML (experimental)Abstract:Diffusion planning has been recognized as an effective decision-making paradigm in various domains. The capability of generating high-quality long-horizon trajectories makes it a promising research direction. However, existing diffusion planning methods suffer from low decision-making frequencies due to the expensive iterative sampling cost. To alleviate this, we introduce DiffuserLite, a super fast and lightweight diffusion planning framework, which employs a planning refinement process (PRP) to generate coarse-to-fine-grained trajectories, significantly reducing the modeling of redundant information and leading to notable increases in decision-making frequency. Our experimental results demonstrate that DiffuserLite achieves a decision-making frequency of 122.2Hz (112.7x faster than predominant frameworks) and reaches state-of-the-art performance on D4RL, Robomimic, and FinRL benchmarks. In addition, DiffuserLite can also serve as a flexible plugin to increase the decision-making frequency of other diffusion planning algorithms, providing a structural design reference for future works. More details and visualizations are available at this https URL.
Submission history
From: Zibin Dong [view email][v1] Sat, 27 Jan 2024 15:30:49 UTC (645 KB)
[v2] Tue, 30 Jan 2024 04:43:27 UTC (1,096 KB)
[v3] Wed, 31 Jan 2024 02:50:41 UTC (1,096 KB)
[v4] Fri, 2 Feb 2024 08:57:16 UTC (1,096 KB)
[v5] Fri, 25 Oct 2024 03:36:07 UTC (5,993 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.