Computer Science > Computation and Language
[Submitted on 27 Jan 2024 (v1), last revised 4 Oct 2024 (this version, v3)]
Title:Do We Need Language-Specific Fact-Checking Models? The Case of Chinese
View PDF HTML (experimental)Abstract:This paper investigates the potential benefits of language-specific fact-checking models, focusing on the case of Chinese. We first demonstrate the limitations of translation-based methods and multilingual large language models (e.g., GPT-4), highlighting the need for language-specific systems. We further propose a Chinese fact-checking system that can better retrieve evidence from a document by incorporating context information. To better analyze token-level biases in different systems, we construct an adversarial dataset based on the CHEF dataset, where each instance has large word overlap with the original one but holds the opposite veracity label. Experimental results on the CHEF dataset and our adversarial dataset show that our proposed method outperforms translation-based methods and multilingual LLMs and is more robust toward biases, while there is still large room for improvement, emphasizing the importance of language-specific fact-checking systems.
Submission history
From: Caiqi Zhang [view email][v1] Sat, 27 Jan 2024 20:26:03 UTC (8,177 KB)
[v2] Sat, 17 Feb 2024 13:10:25 UTC (8,177 KB)
[v3] Fri, 4 Oct 2024 05:02:38 UTC (8,323 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.