Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Feb 2024]
Title:DRSM: efficient neural 4d decomposition for dynamic reconstruction in stationary monocular cameras
View PDFAbstract:With the popularity of monocular videos generated by video sharing and live broadcasting applications, reconstructing and editing dynamic scenes in stationary monocular cameras has become a special but anticipated technology. In contrast to scene reconstructions that exploit multi-view observations, the problem of modeling a dynamic scene from a single view is significantly more under-constrained and ill-posed. Inspired by recent progress in neural rendering, we present a novel framework to tackle 4D decomposition problem for dynamic scenes in monocular cameras. Our framework utilizes decomposed static and dynamic feature planes to represent 4D scenes and emphasizes the learning of dynamic regions through dense ray casting. Inadequate 3D clues from a single-view and occlusion are also particular challenges in scene reconstruction. To overcome these difficulties, we propose deep supervised optimization and ray casting strategies. With experiments on various videos, our method generates higher-fidelity results than existing methods for single-view dynamic scene representation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.