Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Feb 2024 (v1), last revised 1 Nov 2024 (this version, v3)]
Title:BehAVE: Behaviour Alignment of Video Game Encodings
View PDF HTML (experimental)Abstract:Domain randomisation enhances the transferability of vision models across visually distinct domains with similar content. However, current methods heavily depend on intricate simulation engines, hampering feasibility and scalability. This paper introduces BehAVE, a video understanding framework that utilises existing commercial video games for domain randomisation without accessing their simulation engines. BehAVE taps into the visual diversity of video games for randomisation and uses textual descriptions of player actions to align videos with similar content. We evaluate BehAVE across 25 first-person shooter (FPS) games using various video and text foundation models, demonstrating its robustness in domain randomisation. BehAVE effectively aligns player behavioural patterns and achieves zero-shot transfer to multiple unseen FPS games when trained on just one game. In a more challenging scenario, BehAVE enhances the zero-shot transferability of foundation models to unseen FPS games, even when trained on a game of a different genre, with improvements of up to 22%. BehAVE is available online at this https URL.
Submission history
From: Chintan Trivedi [view email][v1] Fri, 2 Feb 2024 11:40:27 UTC (12,814 KB)
[v2] Thu, 30 May 2024 21:04:36 UTC (12,818 KB)
[v3] Fri, 1 Nov 2024 16:51:01 UTC (20,362 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.