Computer Science > Computers and Society
[Submitted on 30 Jan 2024]
Title:Towards Urban General Intelligence: A Review and Outlook of Urban Foundation Models
View PDFAbstract:Machine learning techniques are now integral to the advancement of intelligent urban services, playing a crucial role in elevating the efficiency, sustainability, and livability of urban environments. The recent emergence of foundation models such as ChatGPT marks a revolutionary shift in the fields of machine learning and artificial intelligence. Their unparalleled capabilities in contextual understanding, problem solving, and adaptability across a wide range of tasks suggest that integrating these models into urban domains could have a transformative impact on the development of smart cities. Despite growing interest in Urban Foundation Models~(UFMs), this burgeoning field faces challenges such as a lack of clear definitions, systematic reviews, and universalizable solutions. To this end, this paper first introduces the concept of UFM and discusses the unique challenges involved in building them. We then propose a data-centric taxonomy that categorizes current UFM-related works, based on urban data modalities and types. Furthermore, to foster advancement in this field, we present a promising framework aimed at the prospective realization of UFMs, designed to overcome the identified challenges. Additionally, we explore the application landscape of UFMs, detailing their potential impact in various urban contexts. Relevant papers and open-source resources have been collated and are continuously updated at this https URL.
Current browse context:
cs.CY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.