Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Feb 2024]
Title:NOAH: Learning Pairwise Object Category Attentions for Image Classification
View PDF HTML (experimental)Abstract:A modern deep neural network (DNN) for image classification tasks typically consists of two parts: a backbone for feature extraction, and a head for feature encoding and class predication. We observe that the head structures of mainstream DNNs adopt a similar feature encoding pipeline, exploiting global feature dependencies while disregarding local ones. In this paper, we revisit the feature encoding problem, and propose Non-glObal Attentive Head (NOAH) that relies on a new form of dot-product attention called pairwise object category attention (POCA), efficiently exploiting spatially dense category-specific attentions to augment classification performance. NOAH introduces a neat combination of feature split, transform and merge operations to learn POCAs at local to global scales. As a drop-in design, NOAH can be easily used to replace existing heads of various types of DNNs, improving classification performance while maintaining similar model efficiency. We validate the effectiveness of NOAH on ImageNet classification benchmark with 25 DNN architectures spanning convolutional neural networks, vision transformers and multi-layer perceptrons. In general, NOAH is able to significantly improve the performance of lightweight DNNs, e.g., showing 3.14\%|5.3\%|1.9\% top-1 accuracy improvement to MobileNetV2 (0.5x)|Deit-Tiny (0.5x)|gMLP-Tiny (0.5x). NOAH also generalizes well when applied to medium-size and large-size DNNs. We further show that NOAH retains its efficacy on other popular multi-class and multi-label image classification benchmarks as well as in different training regimes, e.g., showing 3.6\%|1.1\% mAP improvement to large ResNet101|ViT-Large on MS-COCO dataset. Project page: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.