Computer Science > Machine Learning
[Submitted on 7 Feb 2024]
Title:SumRec: A Framework for Recommendation using Open-Domain Dialogue
View PDF HTML (experimental)Abstract:Chat dialogues contain considerable useful information about a speaker's interests, preferences, and this http URL, knowledge from open-domain chat dialogue can be used to personalize various systems and offer recommendations for advanced this http URL study proposed a novel framework SumRec for recommending information from open-domain chat this http URL study also examined the framework using ChatRec, a newly constructed dataset for training and evaluation. To extract the speaker and item characteristics, the SumRec framework employs a large language model (LLM) to generate a summary of the speaker information from a dialogue and to recommend information about an item according to the type of this http URL speaker and item information are then input into a score estimation model, generating a recommendation this http URL results show that the SumRec framework provides better recommendations than the baseline method of using dialogues and item descriptions in their original form. Our dataset and code is publicly available at this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.