Computer Science > Machine Learning
[Submitted on 8 Feb 2024 (v1), last revised 9 Oct 2024 (this version, v2)]
Title:Differentially Private Deep Model-Based Reinforcement Learning
View PDF HTML (experimental)Abstract:We address private deep offline reinforcement learning (RL), where the goal is to train a policy on standard control tasks that is differentially private (DP) with respect to individual trajectories in the dataset. To achieve this, we introduce PriMORL, a model-based RL algorithm with formal differential privacy guarantees. PriMORL first learns an ensemble of trajectory-level DP models of the environment from offline data. It then optimizes a policy on the penalized private model, without any further interaction with the system or access to the dataset. In addition to offering strong theoretical foundations, we demonstrate empirically that PriMORL enables the training of private RL agents on offline continuous control tasks with deep function approximations, whereas current methods are limited to simpler tabular and linear Markov Decision Processes (MDPs). We furthermore outline the trade-offs involved in achieving privacy in this setting.
Submission history
From: Alexandre Rio [view email][v1] Thu, 8 Feb 2024 10:05:11 UTC (435 KB)
[v2] Wed, 9 Oct 2024 13:31:25 UTC (538 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.