Mathematics > Optimization and Control
[Submitted on 9 Feb 2024]
Title:Data-driven Estimation of the Algebraic Riccati Equation for the Discrete-Time Inverse Linear Quadratic Regulator Problem
View PDF HTML (experimental)Abstract:In this paper, we propose a method for estimating the algebraic Riccati equation (ARE) with respect to an unknown discrete-time system from the system state and input observation. The inverse optimal control (IOC) problem asks, ``What objective function is optimized by a given control system?'' The inverse linear quadratic regulator (ILQR) problem is an IOC problem that assumes a linear system and quadratic objective function. The ILQR problem can be solved by solving a linear matrix inequality that contains the ARE. However, the system model is required to obtain the ARE, and it is often unknown in fields in which the IOC problem occurs, for example, biological system analysis. Our method directly estimates the ARE from the observation data without identifying the system. This feature enables us to economize the observation data using prior information about the objective function. We provide a data condition that is sufficient for our method to estimate the ARE. We conducted a numerical experiment to demonstrate that our method can estimate the ARE with less data than system identification if the prior information is sufficient.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.