Computer Science > Information Theory
[Submitted on 12 Feb 2024]
Title:RIS-Empowered LEO Satellite Networks for 6G: Promising Usage Scenarios and Future Directions
View PDF HTML (experimental)Abstract:Low-Earth orbit (LEO) satellite systems have been deemed a promising key enabler for current 5G and the forthcoming 6G wireless networks. Such LEO satellite constellations can provide worldwide three-dimensional coverage, high data rate, and scalability, thus enabling truly ubiquitous connectivity. On the other hand, another promising technology, reconfigurable intelligent surfaces (RISs), has emerged with favorable features, such as flexible deployment, cost & power efficiency, less transmission delay, noise-free nature, and in-band full-duplex structure. LEO satellite networks have many practical imperfections and limitations; however, exploiting RISs has been shown to be a potential solution to overcome these challenges. Particularly, RISs can enhance link quality, reduce the Doppler shift effect, and mitigate inter-/intra beam interference. In this article, we delve into exploiting RISs in LEO satellite networks. First, we present a holistic overview of LEO satellite communication and RIS technology, highlighting potential benefits and challenges. Second, we describe promising usage scenarios and applications in detail. Finally, we discuss potential future directions and challenges on RIS-empowered LEO networks, offering futuristic visions of the upcoming 6G era.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.