Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 16 Feb 2024]
Title:Accelerating Sparse DNNs Based on Tiled GEMM
View PDF HTML (experimental)Abstract:Network pruning can reduce the computation cost of deep neural network (DNN) models. However, sparse models often produce randomly-distributed weights to maintain accuracy, leading to irregular computations. Consequently, unstructured sparse models cannot achieve meaningful speedup on commodity hardware built for dense matrix computations. Accelerators are usually modified or designed with structured sparsity-optimized architectures for exploiting sparsity. For example, the Ampere architecture introduces a sparse tensor core, which adopts the 2:4 sparsity pattern.
We propose a pruning method that builds upon the insight that matrix multiplication generally breaks the large matrix into multiple smaller tiles for parallel execution. We present the tile-wise sparsity pattern, which maintains a structured sparsity pattern at the tile level for efficient execution but allows for irregular pruning at the global scale to maintain high accuracy. In addition, the tile-wise sparsity is implemented at the global memory level, and the 2:4 sparsity executes at the register level inside the sparse tensor core. We can combine these two patterns into a tile-vector-wise (TVW) sparsity pattern to explore more fine-grained sparsity and further accelerate the sparse DNN models. We evaluate the TVW on the GPU, achieving averages of $1.85\times$, $2.75\times$, and $22.18\times$ speedups over the dense model, block sparsity, and unstructured sparsity.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.