Computer Science > Databases
[Submitted on 16 Feb 2024]
Title:idwMapper: An interactive and data-driven web mapping framework for visualizing and sensing high-dimensional geospatial (big) data
View PDFAbstract:We are surrounded by overwhelming big data, which brings substantial advances but meanwhile poses many challenges. Geospatial big data comprises a big portion of big data, and is essential and powerful for decision-making if being utilized strategically. Volumes in size and high dimensions are two of the major challenges that prevent strategic decision-making from (geospatial) big data. Interactive map-based and geovisualization enabled web applications are intuitive and useful to construct knowledge and reveal insights from high-dimensional (geospatial) big data for actionable decision-making. We propose an interactive and data-driven web mapping framework, named idwMapper, for visualizing and sensing high dimensional geospatial (big) data in an interactive and scalable manner. To demonstrate the wide applicability and usefulness of our framework, we have applied our idwMapper framework to three real-world case studies and implemented three corresponding web map applications: iLit4GEE-AI, iWURanking, and iTRELISmap. We expect and hope the three web maps demonstrated in different domains, from literature big data analysis through world university ranking to scholar mapping, will provide a good start and inspire researchers and practitioners in various domains to apply our idwMapper to solve (or at least aid them in solving) their impactful problems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.