Computer Science > Machine Learning
[Submitted on 17 Feb 2024]
Title:BiasBuster: a Neural Approach for Accurate Estimation of Population Statistics using Biased Location Data
View PDFAbstract:While extremely useful (e.g., for COVID-19 forecasting and policy-making, urban mobility analysis and marketing, and obtaining business insights), location data collected from mobile devices often contain data from a biased population subset, with some communities over or underrepresented in the collected datasets. As a result, aggregate statistics calculated from such datasets (as is done by various companies including Safegraph, Google, and Facebook), while ignoring the bias, leads to an inaccurate representation of population statistics. Such statistics will not only be generally inaccurate, but the error will disproportionately impact different population subgroups (e.g., because they ignore the underrepresented communities). This has dire consequences, as these datasets are used for sensitive decision-making such as COVID-19 policymaking. This paper tackles the problem of providing accurate population statistics using such biased datasets. We show that statistical debiasing, although in some cases useful, often fails to improve accuracy. We then propose BiasBuster, a neural network approach that utilizes the correlations between population statistics and location characteristics to provide accurate estimates of population statistics. Extensive experiments on real-world data show that BiasBuster improves accuracy by up to 2 times in general and up to 3 times for underrepresented populations.
Submission history
From: Sepanta Zeighami [view email][v1] Sat, 17 Feb 2024 16:16:24 UTC (7,734 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.