Computer Science > Machine Learning
[Submitted on 19 Feb 2024 (v1), last revised 22 Feb 2024 (this version, v2)]
Title:Dynamic Multi-Network Mining of Tensor Time Series
View PDF HTML (experimental)Abstract:Subsequence clustering of time series is an essential task in data mining, and interpreting the resulting clusters is also crucial since we generally do not have prior knowledge of the data. Thus, given a large collection of tensor time series consisting of multiple modes, including timestamps, how can we achieve subsequence clustering for tensor time series and provide interpretable insights? In this paper, we propose a new method, Dynamic Multi-network Mining (DMM), that converts a tensor time series into a set of segment groups of various lengths (i.e., clusters) characterized by a dependency network constrained with l1-norm. Our method has the following properties. (a) Interpretable: it characterizes the cluster with multiple networks, each of which is a sparse dependency network of a corresponding non-temporal mode, and thus provides visible and interpretable insights into the key relationships. (b) Accurate: it discovers the clusters with distinct networks from tensor time series according to the minimum description length (MDL). (c) Scalable: it scales linearly in terms of the input data size when solving a non-convex problem to optimize the number of segments and clusters, and thus it is applicable to long-range and high-dimensional tensors. Extensive experiments with synthetic datasets confirm that our method outperforms the state-of-the-art methods in terms of clustering accuracy. We then use real datasets to demonstrate that DMM is useful for providing interpretable insights from tensor time series.
Submission history
From: Kohei Obata [view email][v1] Mon, 19 Feb 2024 02:06:04 UTC (4,678 KB)
[v2] Thu, 22 Feb 2024 01:17:29 UTC (4,678 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.