Computer Science > Machine Learning
[Submitted on 19 Feb 2024 (v1), last revised 25 Jun 2024 (this version, v3)]
Title:In value-based deep reinforcement learning, a pruned network is a good network
View PDF HTML (experimental)Abstract:Recent work has shown that deep reinforcement learning agents have difficulty in effectively using their network parameters. We leverage prior insights into the advantages of sparse training techniques and demonstrate that gradual magnitude pruning enables value-based agents to maximize parameter effectiveness. This results in networks that yield dramatic performance improvements over traditional networks, using only a small fraction of the full network parameters.
Submission history
From: Pablo Samuel Castro [view email][v1] Mon, 19 Feb 2024 19:34:07 UTC (597 KB)
[v2] Tue, 4 Jun 2024 13:42:06 UTC (807 KB)
[v3] Tue, 25 Jun 2024 13:10:06 UTC (933 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.