Computer Science > Data Structures and Algorithms
[Submitted on 21 Feb 2024]
Title:A $(5/3+ε)$-Approximation for Tricolored Non-crossing Euclidean TSP
View PDFAbstract:In the Tricolored Euclidean Traveling Salesperson problem, we are given~$k=3$ sets of points in the plane and are looking for disjoint tours, each covering one of the sets. Arora (1998) famously gave a PTAS based on ``patching'' for the case $k=1$ and, recently, Dross et al.~(2023) generalized this result to~$k=2$. Our contribution is a $(5/3+\epsilon)$-approximation algorithm for~$k=3$ that further generalizes Arora's approach. It is believed that patching is generally no longer possible for more than two tours. We circumvent this issue by either applying a conditional patching scheme for three tours or using an alternative approach based on a weighted solution for $k=2$.
Submission history
From: Andreas Emil Feldmann [view email][v1] Wed, 21 Feb 2024 17:07:04 UTC (129 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.