Computer Science > Computer Science and Game Theory
[Submitted on 23 Feb 2024]
Title:Platforms for Efficient and Incentive-Aware Collaboration
View PDF HTML (experimental)Abstract:Collaboration is crucial for reaching collective goals. However, its effectiveness is often undermined by the strategic behavior of individual agents -- a fact that is captured by a high Price of Stability (PoS) in recent literature [Blum et al., 2021]. Implicit in the traditional PoS analysis is the assumption that agents have full knowledge of how their tasks relate to one another. We offer a new perspective on bringing about efficient collaboration among strategic agents using information design. Inspired by the growing importance of collaboration in machine learning (such as platforms for collaborative federated learning and data cooperatives), we propose a framework where the platform has more information about how the agents' tasks relate to each other than the agents themselves. We characterize how and to what degree such platforms can leverage their information advantage to steer strategic agents toward efficient collaboration.
Concretely, we consider collaboration networks where each node is a task type held by one agent, and each task benefits from contributions made in their inclusive neighborhood of tasks. This network structure is known to the agents and the platform, but only the platform knows each agent's real location -- from the agents' perspective, their location is determined by a random permutation. We employ private Bayesian persuasion and design two families of persuasive signaling schemes that the platform can use to ensure a small total workload when agents follow the signal. The first family aims to achieve the minmax optimal approximation ratio compared to the optimal collaboration, which is shown to be $\Theta(\sqrt{n})$ for unit-weight graphs, $\Theta(n^{2/3})$ for graphs with constant minimum edge weights, and $O(n^{3/4})$ for general weighted graphs. The second family ensures per-instance strict improvement compared to full information disclosure.
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.