Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Feb 2024]
Title:Multi-Object Tracking by Hierarchical Visual Representations
View PDF HTML (experimental)Abstract:We propose a new visual hierarchical representation paradigm for multi-object tracking. It is more effective to discriminate between objects by attending to objects' compositional visual regions and contrasting with the background contextual information instead of sticking to only the semantic visual cue such as bounding boxes. This compositional-semantic-contextual hierarchy is flexible to be integrated in different appearance-based multi-object tracking methods. We also propose an attention-based visual feature module to fuse the hierarchical visual representations. The proposed method achieves state-of-the-art accuracy and time efficiency among query-based methods on multiple multi-object tracking benchmarks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.