Computer Science > Computation and Language
[Submitted on 1 Mar 2024 (v1), last revised 16 Jun 2024 (this version, v3)]
Title:ROME: Memorization Insights from Text, Logits and Representation
View PDF HTML (experimental)Abstract:Previous works have evaluated memorization by comparing model outputs with training corpora, examining how factors such as data duplication, model size, and prompt length influence memorization. However, analyzing these extensive training corpora is highly time-consuming. To address this challenge, this paper proposes an innovative approach named ROME that bypasses direct processing of the training data. Specifically, we select datasets categorized into three distinct types -- context-independent, conventional, and factual -- and redefine memorization as the ability to produce correct answers under these conditions. Our analysis then focuses on disparities between memorized and non-memorized samples by examining the logits and representations of generated texts. Experimental findings reveal that longer words are less likely to be memorized, higher confidence correlates with greater memorization, and representations of the same concepts are more similar across different contexts. Our code and data will be publicly available when the paper is accepted.
Submission history
From: Bo Li [view email][v1] Fri, 1 Mar 2024 13:15:30 UTC (778 KB)
[v2] Mon, 4 Mar 2024 06:36:01 UTC (773 KB)
[v3] Sun, 16 Jun 2024 13:53:44 UTC (717 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.