Computer Science > Programming Languages
[Submitted on 4 Mar 2024]
Title:Arrays in Practice: An Empirical Study of Array Access Patterns on the JVM
View PDFAbstract:The array is a data structure used in a wide range of programs. Its compact storage and constant time random access makes it highly efficient, but arbitrary indexing complicates the analysis of code containing array accesses. Such analyses are important for compiler optimisations such as bounds check elimination. The aim of this work is to gain a better understanding of how arrays are used in real-world programs. While previous work has applied static analyses to understand how arrays are accessed and used, we take a dynamic approach. We empirically examine various characteristics of array usage by instrumenting programs to log all array accesses, allowing for analysis of array sizes, element types, from where arrays are accessed and to which extent sequences of array accesses form recognizable patterns. The programs in the study were collected from the Renaissance benchmark suite, all running on the Java Virtual Machine.
We account for characteristics displayed by the arrays investigated, finding that most arrays have a small size, are accessed by only one or two classes and by a single thread. On average over the benchmarks, 69.8% of the access patterns consist of uncomplicated traversals. Most of the instrumented classes (over 95%) do not use arrays directly at all. These results come from tracing data covering 3,803,043,390 array accesses made across 168,686 classes. While our analysis has only been applied to the Renaissance benchmark suite, the methodology can be applied to any program running on the Java Virtual Machine. This study, and the methodology in general, can inform future runtime implementations and compiler optimisations.
Submission history
From: Beatrice Åkerblom [view email] [via PROGRAMMINGJOURNAL proxy][v1] Mon, 4 Mar 2024 19:10:39 UTC (1,035 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.