Computer Science > Information Retrieval
[Submitted on 6 Mar 2024]
Title:Generative News Recommendation
View PDF HTML (experimental)Abstract:Most existing news recommendation methods tackle this task by conducting semantic matching between candidate news and user representation produced by historical clicked news. However, they overlook the high-level connections among different news articles and also ignore the profound relationship between these news articles and users. And the definition of these methods dictates that they can only deliver news articles as-is. On the contrary, integrating several relevant news articles into a coherent narrative would assist users in gaining a quicker and more comprehensive understanding of events. In this paper, we propose a novel generative news recommendation paradigm that includes two steps: (1) Leveraging the internal knowledge and reasoning capabilities of the Large Language Model (LLM) to perform high-level matching between candidate news and user representation; (2) Generating a coherent and logically structured narrative based on the associations between related news and user interests, thus engaging users in further reading of the news. Specifically, we propose GNR to implement the generative news recommendation paradigm. First, we compose the dual-level representation of news and users by leveraging LLM to generate theme-level representations and combine them with semantic-level representations. Next, in order to generate a coherent narrative, we explore the news relation and filter the related news according to the user preference. Finally, we propose a novel training method named UIFT to train the LLM to fuse multiple news articles in a coherent narrative. Extensive experiments show that GNR can improve recommendation accuracy and eventually generate more personalized and factually consistent narratives.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.