Computer Science > Human-Computer Interaction
[Submitted on 28 Feb 2024]
Title:Stress Monitoring Using Low-Cost Electroencephalogram Devices: A Systematic Literature Review
View PDF HTML (experimental)Abstract:Introduction. Low-cost health monitoring devices are increasingly being used for mental health related studies including stress. While cortisol response magnitude remains the gold standard indicator for stress assessment, a growing number of studies have started to use low-cost EEG devices as primary recorders of biomarker data.
Methods. This study reviews published works contributing and/or using EEG devices for detecting stress and their associated machine learning methods. The reviewed works are selected to answer three general research questions and are then synthesized into four categories of stress assessment using EEG, low-cost EEG devices, available datasets for EEG-based stress measurement, and machine learning techniques for EEG-based stress measurement.
Results. A number of studies were identified where low-cost EEG devices were utilized to record brain function during phases of stress and relaxation. These studies generally reported a high predictive accuracy rate, verified using a number of different machine learning validation methods and statistical approaches. Of these studies, 60% can be considered low-powered studies based on the small number of test subjects used during experimentation.
Conclusion. Low-cost consumer grade wearable devices including EEG and wrist-based monitors are increasingly being used in stress-related studies. Standardization of EEG signal processing and importance of sensor location still requires further study, and research in this area will continue to provide improvements as more studies become available.
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.