Computer Science > Machine Learning
[Submitted on 12 Mar 2024]
Title:Efficient Post-Training Augmentation for Adaptive Inference in Heterogeneous and Distributed IoT Environments
View PDF HTML (experimental)Abstract:Early Exit Neural Networks (EENNs) present a solution to enhance the efficiency of neural network deployments. However, creating EENNs is challenging and requires specialized domain knowledge, due to the large amount of additional design choices. To address this issue, we propose an automated augmentation flow that focuses on converting an existing model into an EENN. It performs all required design decisions for the deployment to heterogeneous or distributed hardware targets: Our framework constructs the EENN architecture, maps its subgraphs to the hardware targets, and configures its decision mechanism. To the best of our knowledge, it is the first framework that is able to perform all of these steps.
We evaluated our approach on a collection of Internet-of-Things and standard image classification use cases. For a speech command detection task, our solution was able to reduce the mean operations per inference by 59.67%. For an ECG classification task, it was able to terminate all samples early, reducing the mean inference energy by 74.9% and computations by 78.3%. On CIFAR-10, our solution was able to achieve up to a 58.75% reduction in computations.
The search on a ResNet-152 base model for CIFAR-10 took less than nine hours on a laptop CPU. Our proposed approach enables the creation of EENN optimized for IoT environments and can reduce the inference cost of Deep Learning applications on embedded and fog platforms, while also significantly reducing the search cost - making it more accessible for scientists and engineers in industry and research. The low search cost improves the accessibility of EENNs, with the potential to improve the efficiency of neural networks in a wide range of practical applications.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.