Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Mar 2024]
Title:Pig aggression classification using CNN, Transformers and Recurrent Networks
View PDF HTML (experimental)Abstract:The development of techniques that can be used to analyze and detect animal behavior is a crucial activity for the livestock sector, as it is possible to monitor the stress and animal welfare and contributes to decision making in the farm. Thus, the development of applications can assist breeders in making decisions to improve production performance and reduce costs, once the animal behavior is analyzed by humans and this can lead to susceptible errors and time consumption. Aggressiveness in pigs is an example of behavior that is studied to reduce its impact through animal classification and identification. However, this process is laborious and susceptible to errors, which can be reduced through automation by visually classifying videos captured in controlled environment. The captured videos can be used for training and, as a result, for classification through computer vision and artificial intelligence, employing neural network techniques. The main techniques utilized in this study are variants of transformers: STAM, TimeSformer, and ViViT, as well as techniques using convolutions, such as ResNet3D2, Resnet(2+1)D, and CnnLstm. These techniques were employed for pig video classification with the objective of identifying aggressive and non-aggressive behaviors. In this work, various techniques were compared to analyze the contribution of using transformers, in addition to the effectiveness of the convolution technique in video classification. The performance was evaluated using accuracy, precision, and recall. The TimerSformer technique showed the best results in video classification, with median accuracy of 0.729.
Submission history
From: Hemerson Pistori [view email][v1] Wed, 13 Mar 2024 13:38:58 UTC (11,743 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.