Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Mar 2024 (v1), last revised 9 Apr 2024 (this version, v2)]
Title:PASTA: Towards Flexible and Efficient HDR Imaging Via Progressively Aggregated Spatio-Temporal Alignment
View PDF HTML (experimental)Abstract:Leveraging Transformer attention has led to great advancements in HDR deghosting. However, the intricate nature of self-attention introduces practical challenges, as existing state-of-the-art methods often demand high-end GPUs or exhibit slow inference speeds, especially for high-resolution images like 2K. Striking an optimal balance between performance and latency remains a critical concern. In response, this work presents PASTA, a novel Progressively Aggregated Spatio-Temporal Alignment framework for HDR deghosting. Our approach achieves effectiveness and efficiency by harnessing hierarchical representation during feature distanglement. Through the utilization of diverse granularities within the hierarchical structure, our method substantially boosts computational speed and optimizes the HDR imaging workflow. In addition, we explore within-scale feature modeling with local and global attention, gradually merging and refining them in a coarse-to-fine fashion. Experimental results showcase PASTA's superiority over current SOTA methods in both visual quality and performance metrics, accompanied by a substantial 3-fold (x3) increase in inference speed.
Submission history
From: Zongwei Wu [view email][v1] Fri, 15 Mar 2024 15:05:29 UTC (24,435 KB)
[v2] Tue, 9 Apr 2024 09:52:54 UTC (24,639 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.