Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Mar 2024 (v1), last revised 5 Mar 2025 (this version, v2)]
Title:Sim2Real within 5 Minutes: Efficient Domain Transfer with Stylized Gaussian Splatting for Endoscopic Images
View PDF HTML (experimental)Abstract:Robot assisted endoluminal intervention is an emerging technique for both benign and malignant luminal lesions. With vision-based navigation, when combined with pre-operative imaging data as priors, it is possible to recover position and pose of the endoscope without the need of additional sensors. In practice, however, aligning pre-operative and intra-operative domains is complicated by significant texture differences. Although methods such as style transfer can be used to address this issue, they require large datasets from both source and target domains with prolonged training times. This paper proposes an efficient domain transfer method based on stylized Gaussian splatting, only requiring a few of real images (10 images) with very fast training time. Specifically, the transfer process includes two phases. In the first phase, the 3D models reconstructed from CT scans are represented as differential Gaussian point clouds. In the second phase, only color appearance related parameters are optimized to transfer the style and preserve the visual content. A novel structure consistency loss is applied to latent features and depth levels to enhance the stability of the transferred images. Detailed validation was performed to demonstrate the performance advantages of the proposed method compared to that of the current state-of-the-art, highlighting the potential for intra-operative surgical navigation.
Submission history
From: Junyang Wu [view email][v1] Sat, 16 Mar 2024 08:57:00 UTC (6,036 KB)
[v2] Wed, 5 Mar 2025 12:41:05 UTC (5,775 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.